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Potential theory permits ideal fluid dynamics to be formulated in terms of boundary 
motion. In two dimension, the flow can then be found using conformal mapping. The 
evolution of some Rayleigh-Taylor instabilities is calculated well into the large amplitude 
nonlinear regime. The Rayleigh-Taylor calculation for Atwood ratio unity is used as a 
prototype for a system of theoretical and numerical techniques exploiting complex variable 
theory and high-order quadrature methods. 

I. INTR~DIJ~TI~N 

We consider the idealized case of incompressible, irrotational, inviscid fluid flow in 
plane geometry. With the use of potential theory the time development of the flow 
can be reduced to the problem of the motion of the fluid interface 111. The potential 
problem can be solved by the use of conformal maps. 

We apply this method to Rayleigh-Taylor instability which occurs when a light 
fluid accelerates a heavy fluid. For small disturbances, the amplitude of the interface 
initially grows exponentially in accordance with the linear theory [2]. Subsequently, 
nonlinear effects become important and the interface develops into a shape with a 
rising and broadening bubble of the light fluid and a falling and narrowing spike of 
the heavy fluid. 

We have performed numerical calculations for a simplified case of a single semi- 
infinite fluid falling under gravity (free fall of a free surface) with an initial single 
frequency periodic disturbance. This case allows us to isolate and concentrate on the 
behavior of a single boundary. For a single fluid there is a pure Rayleigh-Taylor 
instability without the subsequent development of a Kelvin-Helmholtz instability. We 
calculate the evolution of the interface into the large amplitude regime. The flow 
asymptotically approaches a steady state in which the bubble rises with a constant 
velocity and the spike is in free fall. Similar calculationshave been described in [ 3). 
In addition, this problem has been calculated using the vortex method in 141. 

A more general purpose in this work was to explore and test various mathematical 
and numerical techniques for dealing with moving boundary problems in two 
dimensions. A partial list of these includes: 
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(a) numerical conformal mapping to high accuracy, applicable to regions with 
severely distorted boundaries, requiring short computer times, 

(b) quadratures of Gauss type for the singular integrals characteristic of 
Green’s function representations, 

(c) numerical derivatives through Gauss quadrature techniques, and 

(d) partial fractions modeling of harmonic functions and analytic functions of 
a complex variable derived from discrete numerical boundary data. This is efficient 
not only for evaluation of such functions within the region, but also for calculations 
with them that can be done analytically. 

The mathematical formulation of the fluid flow in terms of the motion of the 
boundary is described in Section II. The application of conformal maps to solve the 
potential problem is described in Section III. The differencing scheme for the 
equations used in the numerical calculations is described in Section IV. The results of 
the numerical calculations are given in Section V. Concluding remarks are given in 
Section VI. The properties of the steady state solution for the Rayleigh-Taylor 
problem are described in the Appendix. 

II. MATHEMATICAL FORMULATION 

A. Definitions 

Two semi-infinite fluids occupy a two-dimensional space and are separated by a 
one-dimensional interface. Coordinates x and y label the horizontal and vertical axes, 
respectively. The fluids are subject to a potential energy per unit mass V(x, y). For 
the Rayleigh-Taylor problem 

wf, Y) = a, (2.1) 

where g is the acceleration of gravity. 
If the fluids are motionless and the interface is flat and horizontal, then the system 

is held in static equilibrium. At t = 0, the system is perturbed from equilibrium. We 
wish to follow the subsequent motions of the interface and the fluids. 

Let p, 4(x, y, t), v(x, y, t) = V#, P(x, y, t) be the density, velocity potential, 
velocity, and pressure for the upper fluid, and let P; 4(x, y, t), etc. denote the same 
variables for the lower fluid. Because the fluids are incompressible, the potentials are 
harmonic functions. In addition, we assume there is no fluid motion remote from the 
interface. Hence, the gradients of the potentials go to zero as y + f a. 

Let the interface at time t be specified by 

x = qa, t), Y = P(a, t) (2.2) 

in terms of a continuous parameter a. Partial differentiation with respect to t and a 
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will be denoted by subscripts. Let n and s be unit normal and unit tangent vectors to 
WI 

n = (-y^, , x^,>/(.q + py, (2.3a) 

s = (i,, j,p; + yny. (2.3b) 

As the interface is traversed in the direction of increasing a, we suppose the upper 
fluid is on the left; then n points into the upper fluid. With u,, U, denoting the 
velocity components in directions n and s for a fluid element on the interface labeled 
by a, we have 

iI = (-j”, u, + 2, u,)/(aH + jy, (2.4a) 

9, = (.?,v, + 9, u,,/($ + PO)“*. (2.4b) 

For the potentials and fluid velocity components of the interface, we adopt the 
abbreviated notation 

F(a, t) = 4(x, Y, f), 

F,(a, t) = n . vj, 

F,(a, t) = s . @, 

(2Sa) 

(2Sb) 

(2.5~) 

at x = a(a, t), y = ?(a, t). 

B. Kinematic Equation 

The motion of the interface must be consistent with the normal motion of the 
fluids. Thus, 

\ 
u,=F,=F,. (2.6) 

Because we are considering inviscid flow, the fluids can slip relative to one another 
parallel to the interface. There is a shear or vortex at the interface. The velocity U, is 
arbitrary and represents the freedom to choose the parameterization of the interface. 
This is discussed in more detail in Section IV. 

C. Equations of Motion 

From the Bernoulli equation 

4r= - fW>'- D-P/P 

and the time derivative of (2Sa) we obtain, on the interface, 

F,=f(F:,-F,2+2v,F,)-gy^-P/p. 

(2.7) 

(2.8a) 
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Similarly, for the lower fluid 

Ft = j(Fi -Fi $2U,F,) - g$ - F//T. (2.8b) 

The effect of a surface tension u may be included by setting the pressure difference 
across the interface to be 

P-P= a/R, (2.9) 
where R is the radius of curvature 

R-’ = (-;,y^,, - Y*,.qJ/(~~ + JQ3/*. (2.10) 

D. Interface Equations 

Let F”(a(t)) stand for a “mixed” boundary value 

F(u, t) = pF(cf, t) - /TF(a, t). (2.11) 

Then eliminating the pressure from Eqs. (2.8a) and (2.8b), we get 

fr(a, t) = ;p(F:, - Ff + 2v,F,) - $(F; - Ff t 2v,F,) 

-Q-P> d--/R, (2.12) 

which is the basic dynamical equation for the fluid motion. The potentials as 
harmonic functions are determined from their boundary data by means of linear 
integral equations with Green’s function kernels. These Green’s functions are given in 
the next section in terms of conformal maps. On the interface we can infer relations 
of the form (with K, E denoting linear integral operators; see Eq. (3.8)) 

-- -- 
F, = K[F,I, F, = K[F,J = K[F,] (2.13) 

and hence, for the tangential derivative of F”(a, t), we have 

F, = (pK -$)[F,]. (2.14) 

The two-dimensional problem can now be formulated in terms of functions on the 
interface. The three primary functions to be determined are f(a, t), ?(a, t), and F(a, t). 
First, the a-parameterization scheme is specified so that U, can be expressed in terms 
of the other functions. Second, Fs(a, t) is found from F(a, t) via differentiation of F, 
2, and y^ with respect to a. Then U, is found by inverting Eq. (2.14). (In the one fluid 
case, e.g., p= 0, Eq. (2.14) can be inverted analytically to give v, as a quadrature 
over Fs .) Finally, F, and F, are obtained by quadrature of Eq. (2.13). Thus, the 
ingredients to calculate the time derivatives of .C, $, and F from Eqs. (2.4) and (2.12) 
are all in hand. In Section III we describe how complex variable theory can be used 
to determine the Green’s function kernels and also determine the hydrodynamic 
variables in the interior from the boundary data. 
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III. APPLICATION OF COMPLEX VARIABLE THEORY 

A. Preliminaries 

We must do numerical calculations of (1) Green’s functions for regions with 
irregular boundaries, and (2) integrals with these Green’s functions or their 
derivatives as kernels. We consider the region of the upper fluid at a fixed time; the 
procedure for the lower fluid is similar. 

The x, y plane may be regarded as the complex z plane; z =x + iy. Let there be a 
conformal mapping between the region of the upper fluid and a “standard” region of 
the complex w plane, w = u + iv. Green’s functions in two dimensions for the Laplace 
equation are invariant under such maps. The determinations of Green’s function for 
the fluid region is thus reduced to the calculation of a mapping to a standard region 
for which Green’s function is known. 

The integrals may have logarithmic singularities, or pole singularities to be 
evaluated as principal values. If the standard region has suitable translation 
symmetry, Green’s function will obey certain integral identities. These can be 
exploited to perform subtractions in the singular integrals which regularize the 
integrals and permit use of high-order Gaussian quadrature rules. 

We have previously described (51 efficient numerical methods for computing 
conformal maps and computing integrals for potential theory problems. These are 
applicable to the highly irregular regions that occur in Rayleigh-Taylor instability. 
The results needed here will now be summarized, and re-expressed to some extent in a 
revised notation. 

We specialize to the case most frequently studied, in which the inital fluid 
velocities are assumed periodic in x. We may then suppose a(a, t) and ?(a, t) periodic 
in a as well and take the fundamental period as (-n, +z) for x and a. It should be 
apparent, however, how the equations below can be adapted to other geometries. 

Let z = z(w) map the upper half of the w plane onto the region of the upper fluid in 
the z plane. Assume, for standardization, that z(w) maps the interval -rc < u < rz of 
the u axis onto the portion of the fluid interface with --71 <x < II. For this periodic 
case, the standard region is taken as the projective strip --7c < u ,< 71, v > 0. (That is, 
for each v > 0, the points --7c + iv and 71+ iv are identified as the same point. The 
topology is such that the transformation W = -emi” defines a l-l map from the 
standard region to the exterior of the unit circle in the W plane.) 

Let G(w, w’) be Green’s function for the standard region, satisfying 

V;,G(w, w’) = 2n&4 - u’) 6(v - v’) 

and 

~3, G(w, w') = 0 on (-n < u < 7r, v = 0). 

Then 

G(w, w’) = log ]sin $(w - w’)] + log ]sin j(w - w’*)l. (3.1) 



RAYLEIGH-TAYLOR INSTABILITY 33 

To derive this, we might begin with 

This is Green’s function for the exterior of the unit circle in the W plane, with zero 
normal-derivative boundary condition, as follows from, e.g., the method of images. 
Hence G(w, w’) = H(-e-‘“, -eeiW’ ) up to an arbitrary additive constant. 

The standard region has translation symmetry (modulo 2x) in the horizontal 
direction. Thus, G(w, w’) depends on u and U’ only through their difference. Then 
with subscripts again denoting partial differentiation, we have 

jz G,(w,u')du'=-I= G,,s(w,u')du'=O. 
-CT --II 

Also, for w = u = real, 

(3.2a) 

J 

n 

G(u, u’) du’/2n = constant, independent of u. (3.2b) 
-* 

(In this case, the constant is -2 log 2.) 
Consider a function f(w) = &(u, V) + $,(u, u) of period 27r, analytic in the standard 

region including the point at co, with 

lim f(w)=f(oo)=fR(co)+~(oo>. "-CC 

For example, f(w) could be the transform, f(w) =f[z(w)] of a periodic analytic 
function in the upper fluid region of the z plane under the conformal map. Then we 
have, from Green’s formulas and the Cauchy-Riemann conditions, 

j;,&, u) =.&(a~) + I= G(w, u’) &&(u’, 0) du’/2n 
-7r 

(3.3) 

=&W-j= G( w, u’) a,,&~‘, 0) du’/2z 
--R 

Integration by parts yields 

&(u, u) =j;,(co) - ,ir GJw, u’)j&d, 0) du’/2n. (3.4a) 
--x 

Similarly, 

J’,<u, u) =f,(oo) + I= G,(w, u’)j&‘, 0) du’/2n, 
--x 

(3.4b) 
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where 
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GU(w, u’) = Re(a, 2 In sin $(w - u’)} = Re(cot +(w - u’)}. (3.5 1 

The component functions of the map z = z(u) may be written 

x = x(u, u), y = J+, 0). 

Similarly, the component function of the inverse map w = w(z) may be written 

24 = u(x, Y) and u = v(x, y). 

For the boundary points of the region, with the same parameterization as in Eq. (2.2), 
we can define the boundary map function 

whose calculation, according to the methods of [S 1, is the key to all other conformal 
map calculations. Finally, note that in terms of these definitions, 

.qa, t) = x@(a), O), $(a, t) = Au(a), 0). 

B. APPLICATIONS 

1. The Conformal Map 

Becauseflw) = z(w) - w has the requisite analyticity and periodicity properties, we 
can apply Eq. (3.3) to?(w) for u = 0. Regularizing the integral by subtraction using 
Eq. (3.2b) we obtain 

y^(a, t) = ya + f* [ G(u(a), uta’)) - G(i(a, t), a(a’, t)) 1 ;,,(a’, t) da’/2n. (3.6) 
. -7z 

Thus, given $a, t), $(a, t) for any I, we may determine u(a) and J, (also dependent 
on t) by interspersed Gaussian quadrature and the Newton-Raphson method, as 
detailed in [ 5 I. 

With u(a) in hand, the entire conformal map can be obtained by applying 
Eqs. (3.4a) and (3.4b) to the same f(w). The resulting singular integrals can be 
regularized with the aid of Eq. (3.2a) to give 

x(u, u) = u - \’ G,( w, u(a’))l .?(a’, t) - y(u, 0)] u,(a’) da’/k (3.7a) 
. -7% 

y(u, ?I> = y, + u + 1’* G,,(w, u(a’))[?(a’, t) - u(a’) - x(u, 0) + u] u,(a’) da’/2x. 
-* (3.7b) 
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2. The Velocity Potential and Velocity Components 

The velocity potential +5(x, y, t) and the associated stream function ~(x, ~2, t) 
together form an analytic (and periodic) function 

@p(z) = qqx, y, t) + iv/(x, y, t) 

and this can be referred to the w plane via 

S(w) = @(Z(W)). 

Then d@/dz and d6/dw are analytic and periodic as well and can be referred either 
to the w plane for the purposes of calculation or to the z-plane for interpretation. The 
x and 4’ components of fluid velocity are expressed by 

d@ 
z = @x(x, YT t) - 4q-c Y, t). 

The normal and tangential velocities on the boundary are given by 

where s = s(a) represents arc length on the interface and 

ds/du = s,(a)/u,(a) = [,?,(a, t)’ + $,(a, t)’ ] “2/u,,(a). 

Applying Eqs. (3.4a) and (3.4b) to d&/dw on the interface, with a subtraction based 
on Eq. (3.2a), we have 

F,(a) = s,(a) F,(a) = - (* G,(u(a), u(a’)> ” -II 

X b,(a) s&‘> F,@‘) - u,(a’> SJa> F,,(a)\ da’/% (3.8a) 

s,(a) F,(a) = I* G,@(a), u(a’))[u,(a) F,(a’) - u,(a’) F,(a)] da’/2x. (3.8b) 
. --5 

Equation (3.8a) is the explicit representation of Eq. (2.13) for the upper fluid and 
Eq. (3.8b) is the inverse relation. For the lower fluid, we would use Green’s function 
and map for the lower half plane. 

The potential, stream function, and velocity components #,, #Y can be found from 
their boundary values by applying Eqs. (3.4a) and (3.4b) to @J(Z) and d@(z)/dz, 
again with appropriate subtractions to regularize the integrals. 

3. The Pressure 

Consider &D(z)/at = 4, + ivr, whose real part is related to pressure by Eq. (2.7). 
Once the system of interface equations is solved, F, is known as a function of t, and 
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F can be found by means of Eq. (3.3). Numerical differentiation with respect to t 
yields F* and hence dI on the interface. Our prescriptions then define w, on the 
interface. Then gt and hence P are determined in the interior from v/t, after the 
velocity components and / V# 1’ have been determined. 

Alternatively, d, in the interior could be obtained directly from dt on the boundary 
by an analytic continuation of Eq. (3.4b), i.e., by extending G(w, w’) to the complex 
Green’s function. But this representation would have a nearly singular kernel for 
interior points close to the boundary; a numerical quadrature would likely have lower 
relative accuracy than in the approach we have detailed. 

IV. NUMERICAL METHODS 

A. Equations for Single Fluid 

The single fluid problem is the limiting case in which the density of the lower fluid 
p+ 0. The interface becomes a free surface on which the pressure is a constant. It 
simplifies both the physics and the mathematics and represents the physical limit in 
which the kinetic energy of the lower fluid is small compared to that of the upper 
fluid. 

In this case the equations for the motion of the boundary are 

n * (-$,ynJ=F,, (4.1) 

s* ($y^,)=us, (4.2) 

F,=~F~+F,(v,-~F,~)-gy^-ua@R)-‘. (4.3) 

A time varying function independent of x and y has been absorbed into the potential 
to eliminate the pressure from the last equation. This is possible since the pressure is 
constant on the interface. 

As a further simplification we consider the case in which the interface and 
potential are even-periodic with wavelength 2n, 

f$(x, Y) = 4(x + 2% Y> =4(-x, Y). (4.4) 

In this case we need only consider a half wavelength 0 <x < 71. The boundary 
function of the conformal map satisfies the equation [5 1 

Furthermore, the normal derivative is related to the potential on the interface by the 
equation [ 5 1 

K u,(a) F,(a’) sin ~(a’) - ~~(a’) F,(a) sin u(a) 
F,(a) s,(a) =i, cos u(a) - cos u(a’) 

da’/n. (4.6) 
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To compute the value of an analytic function in the interior of the fluid from the 
value of the real part on the interface we use the formulas 

“Me>) -L?(u) u (a) daln 
cos W-cosu(a) I2 1 1 

f,(w) =fR(co) + Re ~~“‘“‘a~o~~~c)o~~~~ sin ’ u,(a) du/n] . 

(4.7a) 

(4.7b) 

These integrals have been regularized by subtractions for efficient evaluation by 
numerical quadrature. 

B. Differencing Scheme 

The differencing scheme we used to solve Eqs. (4.1~(4.6) numerically was guided 
by the need to evaluate integrals by quadrature. The integrals in Eqs. (4.5) and (4.6) 
have been regularized to be nonsingular. However, the integrand at a’ = a is formally 
O/O. Its value at this point is determined by continuity. Rather than computing this 
by interpolation or L’Hopital’s rule we evaluate the integrals by an interspersed 
quadrature scheme described in Ref. 5. To do this, the variable a which parameterizes 
the interface is discretized at the nodes of a pair of interspersed quadrature rules. For 
example, to exploit the periodicity, we may use the Gauss and Lobatto-Chebyshev 
quadrature by choosing the 2N + 1 points 

ai = (i - l)rc/(2N) for i = 1, 2 ,..., 2N + 1. (4.8) 

Then we introduce the variables 

Xi(t) = 2(CZi, t), and Fi(t) = F(CXi, t). (4.9) 

For a Gauss point (ai with i even) we evaluate the integrals using the Lobatto points 
as nodes, 

f(ai, a’) da’/x = (l/N) 1 Ejf(aiy a.i)’ 
j odd 

where E, = Ebb+, = f, and ei = 1 otherwise; and for a Lobatto point (ai with i odd) 
we evaluate the integrals using the Gauss points as nodes, 

1 on f(ai, a’) da’/n = (l/N) x f(ai, aj). 
jeven 

Equation (4.5) is solved for u(ai) by Newton-Raphson iteration as described in [5 1. 
We considered two schemes for calculating numerically the a-derivatives of $9, F, 

and U. The first was a “global derivative” scheme obtained as follows: 
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If we equate the Gauss and the Lobatto quadratures of 

e5 
i 

f(a) -f(a’) da’ 
-3 -0 cosa-cosu’ 71 

we have 

K’ &i f(a) -f(%> = \’ f(a) -f(aJ 
iodd cos a - cos ai i;en cosa-cosui’ 

Then as a approaches one of the (xi, this equations defines (df/da), _ pi in terms of the 
2N + 1 f(a) values on the mesh. The global derivative, so defined, is exact iff(a) is a 
polynomial in cos a of degree not exceeding 2N, the level of accuracy consistent with 
the quadrature formulas. This approach was very successful for the early stages of 
the Rayleigh-Taylor development and for a number of other test problems. It became 
unreliable for the calculation of du/da as the spike became sharp (t 2 3 in the 
examples of the next section), apparently because the near-singular behavior of u near 
x = 0 made the calculation of du/da unstable near x = 7~. That is, the “global” high- 
order nature of the method becomes a disadvantage at this point. 

Lacking a suitable fix for this difftculty, we then approximated du/da by an n-point 
Lagrangian difference formula. This discretization results in a system of 3(2N + 1) 
ordinary differential equations for x,(t), yi(t), and F,(t). These are then integrated in 
time quite efficiently using the routine ODE. This uses a variable time step and 
variable order Adam’s method and is described in detail in (6 1. 

C. Parameterization of the Interface 

Two parameterizations of the interface were used. The first corresponds to an 
Eulerian method with a fixed grid along the x axis. This is accomplished by choosing 

v, = -n,,F,, , (4.10) 

where ny is the y component of the unit normal, in order that 2t = 0. Thus, we may 
take a = x and eliminate one set of equations. The motion of the surface is described 
by 

?;,(x, t) = F,(x, t)[ 1 + $:I I”. (4.11) 

This simplification is possible in principle when the interface g(x) is single valued. In 
the Rayleigh-Taylor problem, as time progresses, the spike gets very narrow and, in 
practice, grid resolution becomes insufficient to follow it. 

The second parameterization corresponds to a Lagrangian method in which the 
grid points move with the fluid. This is accomplished by choosing v, = F,. For the 
Rayleigh-Taylor problem it has the advantage of concentrating the grid points in the 
region where the slope of the interface is steepest. It also increases the resolution in 
the spike region but decreases the resolution in the bubble region. 
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The parameterization has an important effect on the numerical instability. This is 
discussed in Section E. 

D. Diagnostics 

Two quantities, the flux and the energy, are useful as diagnostics to indicate the 
quality of the calculation. For an incompressible fluid the flux must vanish. 

flux = in F,s, da = 0. (4.12) 
-0 

Numerical calculations of (4.12) provide a check on the solution of the potential 
problem and the adequacy of the mesh as a function of time. 

The total energy E is a conserved quantity. It is the sum of three terms: 

Potential energy = - + IX y^’ i’, da, (4.13a) 
‘0 

Kineticenergy=+ ( daP,~,~dylVol’=-~~~FF,s,da, (4.13b) 

Surface energy = u r * (s, - 1) da. (4.13c) 
-0 

The potential and surface energy are relative to the unperturbed surface y^ = 0. Note, 
an additive constant to the potential does not effect the kinetic energy because the 
flux vanishes. The relative change in energy over time, 

should be zero, and its deviation from zero in the calculation provides a check on the 
accumulation of errors from the time integration. 

The flux and relative error in the energy are average quantities. They are not 
sufficient to determine the accuracy of the calculation but seem to be good indicators 
of it. An additional indicator is the smoothness of the solution. The radius of 
curvature is a sensitive quantity for this purpose. 

E. Numerical Stability 

The calculation of the fluid flow for the Rayleigh-Taylor instability problem is 
sensitive to numerical errors. These errors introduce perturbations with half- 
wavelength on the order of the grid spacing. Linear theory predicts in the absence of 
viscosity and surface tension that the growth rate of the instability increases as the 
wavelength decreases. Thus, as time evolves, the growth of perturbations due to 
numerical errors can dominate the problem. In addition, when the problem is 
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discretized, the rapid elongation and narrowing of the spike leads to inaccuracies due 
to lack of resolution. 

We have found the calculation to be quite sensitive to the parameterization 
scheme chosen to represent the interface. With the Eulerian grid, the typical 
calculation runs well up to a certain time and then rapidly breaks down as indicated 
by the energy diagnostic. At this point the distortion of the interface is still well 
within the computational capability of the conformal map scheme [ 5 1. A symptom of 
the numerical breakdown is a lack of smoothness in the bubble region which leads to 
oscillations in the radius of curvature. A likely cause for this was having too few 
points to resolve the rapid variation of y^ and F in the transition regions between the 
bubble and spike. This leads to inaccuracies in evaluating the integral for F,. The 
interspersed quadrature rules have errors of opposite sign and may be a contributing 
factor to the short wavelength oscillations. Even increasing the resolution by doubling 
the number of mesh points did not significantly prolong the time for which the 
calculation maintained accuracy. 

On the other hand, with the Lagrangian grid, the calculation is numerically stable 
for a substantially longer time interval. The grid points tend to concentrate on the 
interface where the slope is steepest, improving the accuracy in evaluating the integral 
for F,. In addition, the spreading apart of the grid points in the bubble region may 
have a stabilizing effect. This increases the wavelength of the numerical disturbances 
and thus decreases their growth rate. A similar effect for vortices was pointed out in 

171. 
A related question is whether the flow in the nonlinear regime is stable to small 

perturbations. The examples in the next section indicate that the flow for a single 
fluid asymptotically approaches a steady state consisting of a rising bubble and a 
falling spike. In the linear theory the instability is driven by the effective gravity 
g - a(t). In the nonlinear regime the fluid acceleration is close to 0 at the tip of the 
bubble and increases to exceed gravity slightly in the spike region. This suggests the 
spike region is locally stable. The bubble region may be locally stable due to the 
tangential velocity neglected in the linear theory which stretches the wavelength and 
flows disturbances towards the spike. The transition region between the bubble and 
spike may be stabilized by a combination of the tangential flow stretching the 
arc length and the slope of the interface which decreases the component of the 
effective acceleration normal to the interface. Thus, the nonlinear flow may be 
physically stable to small perturbations and can be well behaved numerically. This is 
special for a single fluid due to the absence of a subsequent Kelvin-Helmholtz 
instability (growth rate proportional to the product of the densities of the two fluids). 

The calculation is also sensitive to the method of computing derivatives, especially 
of u,. We first applied the methodin [S] to calculate U, by evaluating the integral in 
Eq. (4.5) by both quadrature rules and applying L’Hopital’s rule at the point a = a’. 
With the Eulerian grid, due to a fortuitous choice of points, the flux is negligibly 
small. With the Lagrangian grid, the flux diagnostic breaks down as the amplitude of 
the interface increases. This is the result of an incompatibility between the derivative 
scheme and the quadrature rule. This shows up in errors in computing the integral 
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J‘; ~~(a) da = z However, the quadrature rule does evaluate the integral exactly when 
U, is computed by a Lagrangian rule. As the amplitude of the interface increases, U, 
varies over as many as 10 orders of magnitude in our example. With a Lagrangian 
grid, there are a sufficient number of points for each e-folding of U, for the 
Lagrangian rule to give accurate results for the derivative. This is not the case for the 
Eulerian grid and was the motivation for the derivative scheme developed in 15 1. 

Finally, the time integration has to be sufficiently accurate to avoid inaccuracies 
due to roundoff errors in computing the derivatives. The Lagrangian calculation 
breaks down due to either loss of resolution in the spike region or roundoff errors. 

F. Computer Time 

The principal tasks which determined the computer time were the integrating of the 
dynamical equation and determining the conformal map at each time step. We took 
two approaches to the conformal map. 

The first involved a Newton-Raphson iteration as prescribed in 15 1. The map at 
the previous time step provides a good initial guess and typically only three iterations 
are needed. Each iteration involves a matrix inversion and this uses the larger portion 
of the computer time. Alternatively, an analytic expression for the needed matrix 
inverse is provided by the formula derived in (5 ] 

&4(x) = sin u(x) J: 1 uxw2 4%) - bYx’) 
+ Jqx’)* cos u(x) - cos u(x’) 

dx,,71 
* 

(4.14) 

For large meshes, computing time for obtaining the conformal map by this route is 
proportional to N2, rather than N3 for the Newton-Raphson. Therefore, this 
approach might well be preferable for application of complex variable to more benign 
flow problems. It proved less reliable for the Rayleigh-Taylor problem, however, and 
required significantly more iterations (convergence is linear rather than quadratic). 

Even so, the calculation is very fast. With 2N + 1 = 41 points, to go from a peak 
to peak amplitude of 1 to 5.7 (example in Section V.B up to t = 3) took 15 seconds 
on the CDC 7600. As the amplitude increases the time step decreases and the 
computer time increases. The calculations described in the next section used 81 
points. The longest required less than three minutes on the CDC 7600. 

G. Variables in the Interior 

Because the map variables and all fluid variables of interest are components of 
analytic functions, Eqs. (3.4a) and (3.4b) determine their interior values in terms of 
boundary data. This approach, utilizing interspersed Gauss quadrature and suitable 
regularization, worked well in our numerical experiments. 

We note here an alternative approach with advantages of its own, namely the 
method of analytic modeling. A set of parameters is found from the numerical 
boundary data and the functions whose interior values are sought are then represented 
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as explicit analytic functions depending on the parameters. The fluid variables are 
modeled in the w plane and referred to the physical plane via a modeling of the 
conformal map. 

For a periodic functionf(w), analytic in the upper half plane, we might attempt a 
Fourier series modeling 

!\’ 

f(w)=f= + x a,e’““‘. 
n:l 

But, as we shall show elsewhere, the number N of Fourier terms needed for merely 
order-of-magnitude accuracy near the trough of a boundary can be estimated by 

Now the U, values dealt with in this paper range down to lo-” and are charac- 
teristically less than lop3 for Rayleigh-Taylor flows well into the nonlinear regime. 
Thus, Fourier series modeling is unworkable for most of the phenomena addressed in 
this paper. 

A model which does work well is the following partial fractions representation: 

For our present purposes, we assume that the parameters f,, E,,, CL,, are real so that 
f(w) is even-periodic. (The treatment is easily generalized.) Then on the real line, 

f,(u) =fm + 2 E, ,,,,“~““~,, u - 15 
n-1 n 

f,(u) = 2 F, 
sin u 

’ n=I i cash a, - cos u 

A sum over N fractions requires 2N + 1 parameters, including f,. Given, say, 
2N + 1 data points forf,(u), we may (a) expressf,(u) as a simple continued fraction 
in the variable cos U, or better, in 1 - cos U, using the Thiele algorithm [ 81 and (b) re- 
express the continued fraction as a ratio of polynomials, then resolve it into partial 
fractions in the usual way. 

Thus, for the conformal map, we set z(w) = w + if(w) so that f, = y,, and 
f,(u) = i(u - x). For the complex velocity potential and for the velocity field, f (w) is 
identified with, respectively, @ and d@/dz. 

To calculate the pressure P, we set 

f(w)=F=- lgi2-gy-P,p. 



RAYLEIGH-TAYLOR INSTABILITY 43 

Then P is obtained fromf(w) and a previous calculation of the velocity field, while 
f(w) itself is d e ermined t from the boundary values f,(u) = F,. 

Figures 10-14, described in Section V, were obtained by this method. 

V. ILLUSTRATIVE NUMERICAL RESULTS 

A principal interest of these numerical calculations is to study the large amplitude 
nonlinear effects on Rayleigh-Taylor instability. We begin with the case of a small 
amplitude perturbation, both as a check on the calculations and to determine when 
the linear theory breaks down. With an initial perturbation on the surface 
displacement y^ =A, cos(kx) and _v = 0 the linear theory [2] predicts exponential 
growth, 

5 = A o cos(at) cos(kx), (5.1) 

where 

a = ( [kg@ - ,5) - uk” I/@ + 0)) 1’2 (5.2) 

is the growth rate and k = 271/A is the wavenumber, for wavelengths 

II > AC = 2n[cJ/@ -pp)gp*. (5.3) 

It is convenient to choose the units of length and time such that the wavelength of 
the perturbation is A = 2n(k = 1) and the gravitational acceleration is g = 1. This is 
equivalent to scaling to dimensionless variables x’ = kx and f= (kg)1’2t. For zero 
surface tension u = 0, the motion depends only on the Atwood ratio @ - p)/(p + 0) 
since both the gravitational force and inertial mass scale with density. The following 
calculations are for a single fluid (p= 0) and were performed on Lagrangian grids 
with up to 81 points. 

A. Small Amplitude Perturbation (kA, = 0.01) 

In the first calculation we consider a small amplitude perturbation 

” 
y=-0.01 cosx and v = 0. 

The time evolution of the interface along with the trajectories of interface points is 
shown in Fig. 1. Nonlinear effects distort the shape of the interface into a rising 
bubble (x = X) and falling spike (x = 0). In the spike region, the trajectories are 
approaching vertical indicating that the particles are falling with gravity. In order to 
conserve mass, the trajectories in the bubble rise and are swept towards the spike. 

To compare with the linear theory, the log amplitude A versus time is plotted in 
Fig. 2 for the tip of the bubble and the tip of the spike. At early times the amplitudes 
of the bubble and spike agree with the linear theory. Subsequently, the amplitude of 
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FIG. 1. The time evolution of the interface and trajectory of points 
small amplitude perturbation y^ = -0.01 cos x and v = 0 at ( = 0. 
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FIG. 2. Comparison with linear theory. Log (amplitude) versus time for the tip of the bubble and the 
tip of the spike for an initial perturbation J?= -0.01 cos x and v = 0 at [ = 0. 



RAYLEIGH-TAYLOR INSTABILITY 45 

IO0 

10-l 

lO-2 

10-J 

10-4 

0-5 
x 

10-6 P 
0 

10-7 

10-e 

10-S 

10-10 

o-ll 

0 2 4 6 

TIME 

FIG. 3. Peak to peak amplitude, curvature at the tip of the spike and crowding of the conformal 
map versus time for an initial perturbation i = -0.01 cos x and v = 0 at t = 0. 

the spike is larger and the amplitude of the bubble is smaller than the linear theory. 
Later, the linear theory amplitudes will be higher in both the bubble and the spike 
since asymptotically 

log A --) t, for the linear theory, 

--t 2 log t, for the tip of the spike, 

-+ log t, for the tip of the bubble. 

The deviation from the linear theory becomes significant at about kA z 1. 
The computational difficulty in this problem arises from solving the potential 

problem in progressively more highly distorted regions resulting from the elongation 
and narrowing of the spike. This results in severe crowding of the conformal map. 
The peak-to-peak amplitude, the curvature at the tip of the spike and log(u,) at the 
tip of the spike, which is a measure of the crowding of the conformal map, are shown 
in Fig. 3. The diagnostics indicate the calculation breaks down at a time when 
U,- 5 x lo-“; before this time the accuracy decreases slowly and afterwards 
degenerates rapidly. 

B. Large Amplitude Perturbation (kA ,, = 0.5) 

To get further into the asymptotic region we consider an initial large amplitude 
perturbation y^ = -0.5 cos x and v =O. Figure 4 shows the time evolution of the shape 
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-4 
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-6 

-10 - 
0 T/2 lT 

X 

FIG. 4. The time evolution of the shape of the interface normalized to the tip of the bubble for an 
initial perturbation ?: = -0.5 cos x and v = 0 at I = 0. 

0 I 2 3 
X 

FIG. 5. Curvature versus x at t = 3.75 for an initial perturbation 9 = -0.5 cos .x and v = 0 at I = 0. 
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of the interface by plotting it relative to the tip of the bubble. As time evolves it 
appears as if the interface is tracking out a larger and larger portion of an asymptotic 
steady state shape. The curvature is plotted in Fig. 5. The curvation is approximately 
constant in the bubble region and R ’ = 0.51 k at the tip. Thus the bubble 
approaches a nearly circular shape. This was observed experimentally by Davies and 
Taylor 19 1. 

In Fig. 6, the time development of the velocity of the bubble and the acceleration of 
the tip of the spike are shown. The bubble approaches a constant velocity 
Vb = 0.23 (kg) “* The acceleration of the spike overshoots free fall. The overshoot in 1 
the acceleration is due to a contribution from the gradient of the pressure. The flow 
from the bubble to the spike on each side of the symmetry line above the tip of the 
spike is similar to two streams of fluid colliding. A peak pressure develops on the line 
of symmetry giving rise to a pressure gradient which decelerates the horizontal 
particle velocity and also accelerates the vertical particle velocity. We believe the R ’ 
and vb calculations are accurate to at least the two figures shown. 

Figure 7 shows the potential versus the vertical displacement on the interface. A 
constant has been added to the potential in order that it vanish at infinity (i.e., 
4, = .I‘,” F(x) u,dx/z = 0) and the vertical displacement is measured relative to the tip 
of the bubble. With this normalization a longer and longer portion of an asymptotic 

,I ;---._*_ * 

,,,’ ‘=--:y!KE 
IO - 3’ ----- -______ _ 

#’ 
#’ 

I’ 
#’ 

<’ 
08. ,’ 

,: 
,’ 

,’ V 
BUBBLE 

0 I 2 3 
TIME 

FIG. 6. The time development of the velocity of the tip of the bubble and acceleration of the tip of 
the spike for an initial perturbation $ = -0.5 cos x and v = 0 at t = 0. 

581/51/l-4 



48 MENIKOFF AND ZEMACH 

FIG. 7. The potential versus vertical displacement on the interface for an initial perturbation 
y^=-0.5cosxandv=OatI=O. 
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FIG. 8. Energy versus time for an initial perturbation 9 = -0.5 cos x and v = 0 at t = 0. 
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steady state curve [F+ ($)“‘(-y)“” as y -+ -co ] is being traced out in time. This 
implies the potential in the interior of the fluid is approaching a steady state in the 
frame of reference rising with the bubble, i.e., (d/dt) #(x, y - ~~~,,~,~t, t) -+ 0. In the 
Appendix, the properties of the steady state solution are derived. 

Figure 8 shows the energy versus time. Asymptotically the kinetic energy (and 
hence the potential energy) is expected to vary as t3 since the effective mass increases 
linearly (constant velocity of the bubble) and the effective velocity increases linearly 
(free fall of the spike). The diagnostic of the total energy is seen to remain constant to 
a high accuracy for the time interval depicted. 

The crowding in the conformal map is shown in the plot of log(u,) versus x in 
Fig. 9. In the bubble region, the boundary map function is approximately constant. 
This is the result of the bubble approaching a constant shape and the spike region 
having a small effect on the map in the bubble region (which follows from 
Eq. (4.14)). This calculation breaks down due to loss of resolution in the spike when 
u,(O) = 3 x lo-lo. 

We have computed the flow in the interior of the fluid from the potential on the 
boundary at t = 3. Figure 10 shows the image in the z plane under the conformal map 
of a rectangular grid in the w plane. In the spike region the mesh is highly crowded. 
Above the tip of the bubble a rectangular grid is rapidly approached. Figure 11 is a 

FIG. 9. Time evolution of the boundary function of the conformal map for an initial perturbation 
y^=-0.5cosxandv=Oatf=O. 
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FIG. 1 I. Contour plot of potential (dotted) and stream function (solid) at I = 3 for an initial pertur- 
bation y^ = -0.5 cos x and v = 0 at t = 0. The range of the potential contours is from -0.5 to 9.5 in steps 
of 0.25. The range of the stream function contours is from 0 to I.5 in steps of 0.25. 
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0 lT/2 lr 

X 

FIG. 12. Contour plot of pressure at I = 3 for an initial perturbation y^ = -0.5 cos x and v = 0 at 
t = 0. The pressure is taken as zero on the interface. It ranges from slightly above 0.2 near the origin 
down to -2.3 at the top of the graph (.r = 4), with contours shown in steps of 0.1. 

1 

FIG. 13. Pressure versus distance above the tip of the bubble and the tip of the spike at t = 3 for an 
initial perturbation $ = -0.5 cos x and v = 0 at f = 0. 
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contour plot of the potential and stream function. The streamlines from the fluid rise 
above the bubble and are swept down the spike. The streamlines in the spike region 
approach vertical lines indicating the fluid is tending towards free fall. Figure 12 is a 
contour plot of P. The pressure has a peak above the spike. Figure 13 is a one- 
dimensional plot of P versus y above the tip of the spike and the bubble. It shows that 
the pressure rapidly approaches its equilibrium value (-gy) above the tip of the 
bubble. Figure 14 is a plot of the vertical velocity versus y above the tip of the spike 
and above the tip of the bubble. It shows the rapid decrease in velocity, u - exp(-ky), 
above the tip of the bubble. 

Figures 10-14 were obtained by the analytic modeling from the boundary values of 
z(w), @, d@/dz, and a#/&, according to the partial fractions representation 
prescribed in section 1V.G. To indicate the character of the modeling, we list in 
Table I the parameters, f, , E,,, a,, 1 < n < 10, for the representation of each of these 
four functions obtained by a 21-point lit to the calculated values of their real parts on 
the interface. The interior values may be obtained to at least the accuracy of the 
boundary values, but the quoted three-figure accuracy is sufficient for the graphs. 

C. Velocity Perturbations [u, = 0.5 (g/k) ‘/’ ] 

Due to the nonlinearities, the approach to the steady state depends on the initial 
perturbation resulting from the potential 4(x, y) = 0.5 cos(x) exp(-y) and an unper- 
turbed interface ,C = 0. 

-4.0 -2.0 0 20 40 

FIG. 14. Velocity versus distance above the tip of the bubble and the tip of the spike at t = 3 for an 
initial perturbation y^ = -0.5 cos x and v = 0 at t = 0. 
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FIG. 15. The time evolution of the interface normalized to the tip of the bubble for an initial 
bation F= -0.5~0~~ and.?=0 at t=O. 
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FIG. 16. The acceleration of the tip of the spike and velocity of the tip of the bubble versus time for 
an initial perturbation F = 0.5 cos x and J; = 0 at t = 0. 
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1. With Gravity (g = 1) 

The time evolution of the interface is shown in Fig. 15. The interface has a similar 
bubble and spike shape to that in Fig. 4 for an initial surface disturbance, but the 
bubble is broader and the spike is narrower. As time evolves the interface is 
approaching the steady state shape. It appears as if the rising bubble only slowly 
adjusts to the wavelength imposed by the boundary conditions. 

The acceleration of the spike and the velocity of the bubble are shown in Fig. 16. 
The acceleration of the spike overshoots the acceleration of gravity by a larger 
amount than in the previous case. The velocity of the bubble initially decelerates due 
to the pressure gradient arising from the velocity field and the condition of incom- 
pressibility. Subsequently, the bubble velocity increases towards its steady state value. 

2. Without Gravity (g = 0) 

A Rayleigh-Taylor type of instability can also arise when a corrugated interface is 
given an impulsive accelaration by a passing shock wave [ 10, 111. To the extent that 
the compressibility of the fluid may be neglected, this case can be approximated by 
an initial velocity perturbation in the absence of gravity. The time scale is set by and 
the motion scales with the initial velocity. 

The time evolution of the interface is shown in Fig. 17. If the time is adjusted 
appropriately, the shape of the interface is nearly the same as in the previous case 

FIG. 17. The time evolution of the interface normalized to the tip of the bubble with g = 0 for an 
initial perturbation F = 0.5 cos .x and f = 0 at f = 0. 
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0 I 2 3 4 

TIME 

FIG. 18. The velocity of the tip of the bubble and (minus) tip of the spike versus time with g = 0 for 
an initial perturbation F = 0.5 cos x and $ = 0 at I = 0. 

with gravity (Fig. 15). It appears that the main effect of gravity is to supply energy 
(potential energy is converted to kinetic energy) resulting in the flow occurring at a 
faster rate. 

The velocity is shown in Fig. 18. The velocity of the spike accelerates and then 
levels off at about 1.8 times its initial value. The velocity of the bubble decreases 
towards zero. Since P/p + gy + 4 1 V# I* satisfies the Laplace equation, it follows that 
the initial pressure field is 

P,(x, y) + pgy = --&Fi exp(-2y) + constant (5.4) 

for Q,,(x, y) = Fi cos(x) exp(-y). Hence the initial particle acceleration for a point on 
the interface $ = 0 is 

a=gv = -V(P/p + gy)=(O,-Fi). 

Thus the peak to peak amplitude of the interface initially grows at a constant rate 

W~(Y, - Y,) = 2J.o and (d2/dt2)(.v, -Y,) = 0. 

This is similar to the result in [ 10, 111, 
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FIG. 19. Time dependence of the Fourier coefficients of the interface for the stable case with 
g = -n2 and an initial perturbation y^ = -0.1 cos x and v = 0 at I = 0. 

D. Stable Case 

When the sign of g is reversed, the flow becomes oscillatory (but not periodic). 
This is like the sloshing of a fluid in a tank (except that the fluid is on top and 
gravity points upward). In the following examples we choose g = --x2 for which the 
linear theory predicts a period of T = 2. For the first case, we consider an initial 
small amplitude perturbation y^ = -0.1 cos x and v = 0. The nonlinearities couple to 
the normal modes with shorter wavelengths and varying periods thus giving rise to 
aperiodic motion. This can be expressed by expanding the interface in a Fourier 
cosine series 

y^(x, I) = 2 a,(t) cos nx. 
II=1 

The numerical calculation is very stable for this case. Figure 19 shows the first few 
coefficients as a function of time. The series is dominated by the first term. In this 
case the perturbation theory in [ 121 should apply. 

For an initial perturbation with a larger amplitude 

5 = -0.5 cos x and v=o 

the character of the flow changes. Figure 20 shows the time development of the 
interface during the second half-cycle. A spike develops with larger than the initial 
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FIG. 20. Time development of the interface during the second half-cycle for the stable case g = -E* 
and an initial perturbation j = -0.1 cos x and v = 0 at f = 0. 

amplitude. The calculation breaks down at t = 2.3 due to lack of a resolution when 
the curvature is R -i(O) = 123 k. The change in the flow with increasing amplitude is 
undoubtedly related to the fact that with fully periodic boundary conditions traveling 
waves (as opposed to standing waves) only exist below a critical amplitude 
(a < 0.43/k for a single fluid) [ 131. Above this amplitude breaking waves evolve 
because the particle velocity exceeds the phase velocity. For even-periodic conditions 
a similar sort of phenomenon must occur. 

VI. SUMMARY 

We have used potential theory to reduce the ideal fluid flow problem to the motion 
of the boundary. The potential problem is solved with the use of conformal maps. 
This scheme works well even for highly distorted regions in which the conformal map 
suffers from severe crowding. 

We have applied this method to compute Rayleigh-Taylor instability for a single 
fluid. For a single frequency perturbation nonlinear effects become important when 
kA z 1. The flow asymptotically approaches a steady state of a nearly circular 
bubble rising with a constant velocity and a freely falling spike. The acceleration of 
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the tip of the spike overshoots and then approaches the acceleration of gravity from 
above. With an initial velocity perturbation, the shape of the interface with and 
without gravity are nearly the same if the times are selected appropriately. The main 
effect of gravity seems to be converting potential energy into kinetic energy resulting 
in the motion occurring at a faster rate. Finally, for the stable case in which the 
gravitational acceleration is directed into the fluid, the flow changes character above 
a certain amplitude. With periodic boundary conditions this method could be used to 
calculate surface waves. 

The methods described here are directly applicable to a two-fluid Rayleigh-Taylor 
problem (both p and p nonzero) with two additional complications. First, for 
problems and for large times such that the Lagrangian grid (grid points move with 
the fluid) is preferable to an Eulerian grid, a 2-fluid problem requires two grids 
tracking the same interface, one for the variables of each fluid. Second, Eq. (2.14) 
cannot be inverted analytically as was the case for p= 0, and the determination of F, 
from Fs must be done numerically, i.e., a matrix inversion after the right side of 
(2.14) is represented as a quadrature. 

APPENDIX: STEADY STATE SOLUTION 

The numerical results in Section V.B suggest that for one fluid with a single- 
frequency perturbation, the Rayleigh-Taylor flow approaches a steady state for large 
times. In this section, we derive the steady state relations from our general 
formulation and infer some general properties. This problem has previously been 
studied by Davies and Taylor 191, Birkhoff and Carter [ 141, and Garabedian ] 15 ]. 
We, like these authors, lack existence and uniqueness theorems; our discussion is 
heuristic rather than rigorously deductive. 

We return to dimensional units. For even-periodic perturbations, the limiting form 
of the equation for the interface is taken as 

j(x, t) = vb t + constant + U(x) (A.11 

on the basic interval 0 < kx < 7~. Then j(x) is the envelop of the interface curves at 
various times represented in, say, Figs. 4, 15, and 17. We have v(x) + -co as x--t 0 
and will standardize to 

j(kn) = 0. tA.2) 

The associated vertical component of the interface velocity can be taken as 

F,(x, t)(l + y,(x)‘>“’ = (uJk)( 1 - d(kx)). (A.3) 

This describes an upward motion of the interface at a constant “bubble velocity” vh, 
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offset by an infinite sink (Dirac delta-function) at x = 0, and consistent with the flux 
condition 

7c F,(x, t)( 1 + v;(x)‘)“’ - Wx) = o . 
0 71 

For x # 0, (A. 1) and (A.2) are also consistent with (4.11). 
To complete the specification, we invoke the conformal map equations ]5 1. The 

map z = Z(W) that carries 0 < u < n has the general form 

kz(w) = w + iW(e’“‘), (A.4) 

where, for the even-periodic case, W(c) is a real analytic function of [ = e’” for 
I[/ < 1 and vanishes as ][] -+ 0, i.e., as Im w + +co. The map equations for the 
boundary curve and the (real) boundary potential are 

kJqx) = kYm + log 2 + Jr log (cos U(X) - cos U(X’)l + 64.5) 

and 

F(x, t) = F,(t) + J-; log 1 cos U(X) - cos U(X’)] F,(x’, t) 

d(kx’) 
x [l -jj;(x’)]i’* p. 

II 64.6) 

Then, in the large time limit, 

F(x, t) = F,(t) + 1+,()7(x) - 9, - log 2) - (qJk) log( 1 - cos u(x)). 

Applying these ingredients to the Bernoulli equation on the boundary, 

(A.7) 

dF(x, r) 1 
at = ~(1;: - Ff ) + y^,F, F, - gy^ + constant, 

with standardization (A.2), we infer 

dF,W ~ = -ub t + constant 
at 

and 

’ log( 1 - cos u) 1 + gky( 1 + 7;) = 0. (A4 

Integral equation (A.5) and differential equation (A.8) constitute a closed system 
which jointly determine the shape y = y(x) of the interface in the large time limit and 
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the boundary map function u = U(X) in that limit. The determination of U(X) from 
y(x) through (AS) together with the boundary conditions u(0) = 0, u(kn) = rc is 
unique. Although (A.7) is a first order differential equation for, say, y(x) in terms of 
u(x), it has two boundary conditions, y(O) = -co, and j&r) = 0 and the constant 
Y = %WYZ emerges as an (apparently unique) eigenvalue. Methods for approx- 
imate solution of this pair of equations will be discussed elsewhere. 

In the spike region, i.e., near x = 0, jX is large, and approach co as x --) 0. Thus, for 
small x, we may neglect 1 compared to jjz in Eq. (A.8). The resulting equation 

d 

’ WY) 
- log( 1 - cos u(y)) = (-2by)“z 

has the solution 

ky = -(%y2)“3 [constant.- log( 1 - cos u)] 2’3. 

An analytic continuation of this which is consistent with (A.4) may be written as 

[c, - 2 log( 1 - e’“‘)] *j3, (A-9) 

where c0 is a real constant. 
More general forms consistent with (A.4) may also be written including some with 

additional, but weaker, essential singularities at w = 0. But Eq. (A.9) suffices to 
define the leading terms in x(u) and y(u) for u and hence x near zero, 

(-log u) - 1’3, (-ln’u)2’3 

Then in the limit x + 0, 

and 

u(x)Zexp [-$ (-&-)3]. 

(A. 10) 

(A.1 1) 

Corrections to Eq. (A.lO) would include powers of x (of which the lowest, in fact, 
is x4) and terms with essential singularities of the exp(-x-‘) type. 

The complex potential @(z, t) defined by its real part F(x, t) on the boundary 
Eq. (A.7) is 

@(z, t) = F,(t) + vbz + constant + Y(z) 
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where 

Y(z) = -(vJk) log(cos w(z) - 1). (A.12) 

The potential Y(z) describes the flow in a frame moving upward with the tip of the 
bubble. In this frame, a uniform flow enters at y = $03 and the tip of the bubble is a 
stagnation point. The steady state flow and the region into which it is conformally 
mapped is sketched in Fig. Al. The steady state conditions imply the range of Y(z) is 
the strip -ao < yk < co, 0 < Y, < rub/k. Equation (A.12) is the conformal map 
onto this strip from a semi-infinite strip 0 < u < rr, v > 0. Birkhoff and Carter ] 14 ] 
arrived at an equation equivalent to (A.7) from this geometric equation. 

Garabedian [ 151 claimed the flow is not unique. The question of uniqueness is 
related to the allowable boundary conditions at y + --co. Adding derivatives of delta 
functions to the right-hand side of Eq. (A.3) would yield a variety of conditions. 
However, the condition of uniform flow in the spike as expressed by (A.3) appears to 
lead to the only physically relevant motion. 

Now consider the fluid motion defined by (A. 12) and (A.9) for small 1 w 1, i.e., in 
the interior of the spike for small x and large negative y. The leading terms are 

kz z -i ?!$ 
i \ 

l/3 
(-log W)2’3. v(z) =: 2(v,lk)(--log ~1 

whence, to leading order, 

W-PLANE Z-PLANE 

(A.13) 

FIG. Al. Sketch of the streamlines in the z plane of the steady state flow and the region in the M’ 
plane onto which it is conformally mapped. The points z = (0. -co) and (L 0) correspond to the points 
w = (0.0) and (n, 0), respectively. 
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A complex function, which is defined in the fluid region and has the general 
properties of the potential, is 

Q(z) = (!$)‘/‘{log[A + exp(iz)])“’ - ub log[ 1 t B exp(-iz)], 

where A > 2 and B > 1. This function is analytic and even-periodic. The first term 
agrees with the leading term of the potential as y -+ -a. The second term agrees with 
the leading term of the potential as y + t co. The parameters A and B can be adjusted 
in order that dsl/dz = 0 at z = 7c, the tip of the bubble. Thus, Q(z) provides a 
reasonable guess for a model of the potential. 

The velocity field in the spike region from Eq. (A.13) is 

Wz) 
vx --Ivy = dz 

- =: i(2igz)“*, 

so to first order in x, 

0, = -(-2gyy*, v, = (-x/2y) u,. (A. 14) 

Then the model of fluid with the spike falling in the time-independent field V/(Z) at 
large times leads to a descent according to the law y = - 4 gt*, which is in accord 
with the numerically calculated y^(x, t) for small x. 

The steady state potential Y’(z) also provides an estimate of how the shape of the 
Rayleigh-Taylor spike changes at large times. The motion of the interface is given by 

a, y^(x, t) = uy - u, y”,(x, t). (A.15) 

Near the tip of the spike, y^(x, t) can be expanded in a power series, 

y^ = - 4 gt* + fR -l(t) x2 t 0(x4), (A.16) 

with R(t) denoting the radius of curvature at the tip. Substituting Eqs. (A.14) and 
(A. 15) into (A.16), we infer for the coefficient of x2, 

i?,(R - ‘) = 3R - ‘It. 

This implies, for large t, 

R(t)= 
constant 

t3 . (A.17) 
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